智慧高效率照明系統技術規範

中華民國106年2月20日 能技字第10605001580號公告發布 中華民國106年12月7日 能技字第10605019851號公告修正 中華民國108年1月14日 能技字第10805000161號公告修正 中華民國109年2月4日 能技字第10905000121號公告修正 中華民國110年2月24日 能技字第11005001411號公告修正

1. 適用範圍:110 年最適化智慧照明系統示範補助計畫

2. 參考標準:

CNS 16047 室內一般照明用 LED 平板燈具

CNS 15437 輕鋼架天花板嵌入式 LED 燈具

CNS 12112 室內工作場所照明

CNS 5065 照度測定法

CNS 15592 光源及光源系統之光生物安全性

IEC/TR 62778 藍光對光源和燈具的危害評估

CIE TN 006:2016 Visual Aspects of Time-Modulated Lighting Systems –

Definitions and Measurement Models

- 3. 智慧高效率照明系統包含 LED 照明燈具與智慧照明控制系統,廠商於投標時須出具相關證明文件,說明如下:
 - (1) LED 照明燈具:
 - A. LED 燈具須檢具經濟部標準檢驗局(BSMI) CNS 14335與 CNS 14115驗證 登錄合格證書影本。
 - B. 提供 LED 燈具性能檢測合格報告影本,檢測報告須由財團法人全國認證基金會(TAF)認可之 CNS 15437「輕鋼架天花板嵌入式 LED 燈具」或「CNS 16047室內一般照明用 LED 平板燈具」檢測實驗室出具。決標簽約時則需檢具 LED 燈具性能檢測合格報告正本。
 - (2) 智慧照明控制系統:
 - A. 提供控制系統規格書,控制系統須具備電表,規格書中須包含系統與電表之廠牌、型號及功能,規格書須加蓋公司章。
 - B. 智慧照明控制功能, 說明書須加蓋公司章。
 - (3) 燈具通訊標準介面:

檢附工研院綠能所出具之燈具通訊標準介面檢測合格報告,測試方法依據

"燈具通訊介面測試標準"(如附件一)。

- 4. LED 照明燈具性能檢測須符合以下規定;其量測方法請參照「CNS16047室內 一般照明用 LED 平板燈具」,在額定電壓、額定頻率之全載狀態下進行測試。
 - (1) LED燈具發光效率 ≥ 160 lm/W,且實測值須在標示值95%以上。可調色溫 燈具之色溫範圍至少包含3000K至5000K;其發光效率≥140 lm/W,且實測 值須在標示值95%以上。
 - (2) LED 燈具演色性指數(Ra) ≥ 80, 且R₉ > 0; 實測Ra值不得低於額定值減去3。
 - (3) LED燈具功率之實測值不得超過標示值110%。
 - (4) LED燈具功率因數≥0.90,且實測值須在標示值95%以上。
 - (5) LED燈具輸入電流諧波失真之實測值不得超過表1規定值,且電流總諧波失 真≦33%。

表1輸入電流諧波失真

	We will will be the second of
諧波次數 n	容許諧波最大比值 (以輸入電流基本波之百分比表示) %
2	2
3	$30 \times \eta$
5	10
7	7
9	5
$11 \le n \le 39$	3

備考:η為功率因數

(6) LED 燈具光通量實測值須在額定標示值之90%以上,額定標示值之120%以 下;LED平板燈具之額定光通量規定如表2,非LED平板燈具不適用此規定。

表2 LED平板燈具之光通量規定

額定光通量 (lm)	光通量下限 (lm)	光通量上限 (lm)
2500	2250	3000
2700	2430	3240
3000	2700	3600
3500	3150	4200
5000	4500	6000

(7) LED平板燈具亮度實測平均值應低於亮度限制基準如表3。非LED平板燈具 不適用此規定。

+ 0 1		T. 1 -	134 -	• •			
表3]	LED	半板	烙上	上品	虺	界	制

γ 角(°)	亮度限值(cd/m²)
45	34900
55	17000
65	7000
75	3260
85	3260

- (8) LED平板燈具實測距高比≥1.2。非LED平板燈具不適用此規定。
- (9) LED平板燈具輝度實測均勻度(最低/算數平均值)≥0.8。輝度量測範圍為燈具 之出光面,其量測佈點方式如下圖1所示。非LED平板燈具不適用此規定。

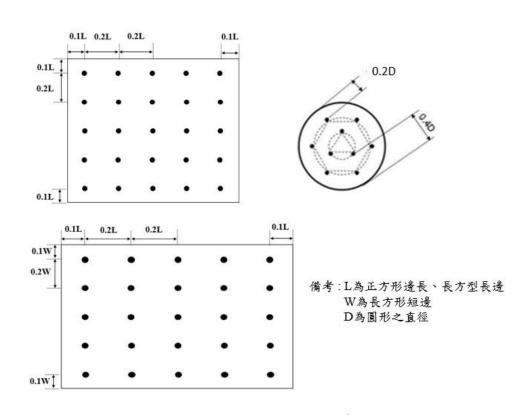


圖1 輝度均勻度量測點示意圖

- (10) LED 燈具光生物安全須符合 CNS 15592 及 IEC/TR 62778 無風險等級。
- (11) LED燈具均須為可調光,調光範圍至少為0,10%~100%。

檢測實驗室之測試點應包含100%光通量、50%光通量、10%光通量及 0,共四點;50%光通量測試點允許在額定光輸出測試值之50%光輸出值的 ± 5%範圍內,10%光通量測試點允許在額定光輸出測試值之10%光輸出值的 ± 10%範圍內。

(12) LED燈具點燈1000小時後光通量維持率≥97.0% 且 1000小時後實測 Ra 不得低於額定值減去4。

- (13) LED燈具在額定功率(全載)時須符合閃爍指數(Flicker index, FI): ≤ 0.02 , 閃爍百分比(Percent Flicker, PF): $\leq 2\%$ 。LED燈具調整至最大光輸出之20%時,須符合閃爍指數(Flicker index, FI): ≤ 0.05 ,閃爍百分比(Percent Flicker, PF): $\leq 5\%$ 。量測時參考CIE TN 006:2016之試驗要求,進行閃爍指數、閃爍百分比測試。閃爍測試程序依據附件二。
- (14) LED燈具之待機功率(含通訊模組)需≦0.5W。

(15) 標示:

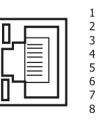
- A. LED燈具須於燈具本體標示發光效率、色溫、演色性、功率、功因、額 定光通量、光生物安全、閃爍指數、閃爍百分比及燈具智慧控制通訊介 面、待機功率等。
- B. 電源供應器需標示廠牌、型號、規格及轉換效率(%)。

5. 智慧照明控制系統:

- (1) 智慧照明控制系統須包含照明控制與能源管理監測功能:
 - A. 能源管理系統必須能監測並定時記錄示範場域內所有 LED 燈具(含不可調光燈具)之照明總用電量,其最大時間間隔為15分鐘。
 - B. 能源管理系統須可輸出照明用電資訊,依需求採時、日、月、年為單位輸出該時段之最大用電功率及用電度數等資訊,包含圖與表之型式。
 - C. 照明控制依實際環境需求搭配時序控制、人員感知控制、畫光照明調 光、場景照明設定/呼叫等功能。
 - D. 照明控制系統須具備整合控制能力,可整合感測資訊對照明燈具進行獨立或群組調光控制。
- (2) 無論中央控制系統失效與否,所有智慧型燈具均須能透過壁面開關進行手動開、關燈及調光功能。

6. 燈具通訊介面:

- (1) 計畫場域之LED燈具其智慧控制宜採用有線(1-10V、PWM、DALI、PLC)或無線(ZigBee、WIFI、Bluetooth)之通訊介面。
- (2) 調光燈具所使用之電源供應器必符合"電(源)-通(訊)分離"之設計,如圖2所示,通訊模組應置於燈具之外,LED電源供應器須能對通訊模組供電,LED電源供應器與通訊模組間之介面,其機構與訊號應至少符合「類比介面」或「數位介面」其中之一項標準規格,介面之標準說明如下:


圖2電-通分離設計示意圖

A. 類比介面:

a. 使用 RJ45 端子機構,如圖3所示。

- (a) 電源供應器端 (b) 通訊模組端 (c) 電源供應器端腳位順序 圖3 類比介面標準端子機構
- b. 機構規格與腳位順序:

Pin 1: Vcc (LED電源供應器對通訊模組之供電腳位)

Pin 3: Ls1 (對應於第一組光源之類比調光訊號)

Pin 5: Ls2 (對應於第二組光源之類比調光訊號)

Pin 7: GND (接地腳位)

註:若單一組光源則設定在Ls1,若有調色溫需求則設定在Ls1(高 色溫)與Ls2(低色溫)。

c. 電氣規格之定義:

- (a) Vcc電壓 12V
- (b) Vcc可輸出電流 > 40mA,包括0亮度調光(關燈)的情況下
- (c) 類比調光訊號範圍0, 1~10V
- (d) 類比調光訊號在0.5V以下時,LED電源供應器對應於該組光源 之輸出功率應為 0

B. 數位介面:

a. 使用USB Type A 端子機構,如圖4所示。

- (a) 電源供應器端 (b) 通訊模組端
- (c) 通訊模組端腳位順序

圖4數位介面標準端子機構

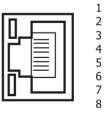
b. 機構規格與腳位順序:

Pin 1: Vcc (LED電源供應器對通訊模組之供電腳位)

- Pin 2: D_command (通訊模組輸出至LED電源供應器之訊號腳位)
- Pin 3: D_feedback (LED電源供應器回饋至通訊模組之訊號腳位)
- Pin 4: GND (接地腳位)電氣規格之定義:
- c. 電器規格之定義:
 - (a) Vcc電壓 3.3V
 - (b) Vcc可輸出電流 > 40mA,包括0亮度調光(關燈)的情況下
 - (c) 傳輸速率 2400 bps
- d. 數位指令內容採用DALI-2 標準指令
- 7. 計畫場域之平均照度值須符合 CNS 12112照度基準。
- 8. 燈具及智慧照明控制系統須保固五年以上。

附件一

燈具通訊介面測試標準


1. 定義

1.1 類比介面

1.1.1 使用 RJ45 端子機構,如圖1所示。

(a) 電源供應器端

(b) 通訊模組端

(c) 電源供應器端腳位順序

圖1類比介面標準端子機構

1.1.2 機構規格與腳位順序:

Pin 1: Vcc (LED電源供應器對通訊模組之供電腳位)

Pin 3: Ls1 (對應於第一組光源之類比調光訊號)

Pin 5: Ls2 (對應於第二組光源之類比調光訊號)

Pin 7: GND (接地腳位)

註:若單一組光源則設定在Ls1,若有調色溫需求則設定在Ls1(高色溫)與Ls2(低色溫)。

1.1.3 電氣規格之定義:

- (a) Vcc電壓 12V
- (b) Vcc可輸出電流 > 40mA,包括0亮度調光(關燈)的情況下
- (c) 類比調光訊號範圍0,1~10V
- (d) 類比調光訊號在0.5V以下時,LED電源供應器對應於該組光源之輸出功率應為0

1.2 數位介面

1.2.1 使用USB Type A 端子機構,如圖2所示。

(a) 電源供應器端

(b) 通訊模組端

(c) 通訊模組端腳位順序

圖2數位介面標準端子機構

1.2.2 機構規格與腳位順序:

Pin 1: Vcc (LED電源供應器對通訊模組之供電腳位)

Pin 2: D_command (通訊模組輸出至LED電源供應器之訊號腳位)

Pin 3: D_feedback (LED電源供應器回饋至通訊模組之訊號腳位)

Pin 4: GND (接地腳位)

1.2.3 電氣規格之定義:

(a) Vcc電壓 3.3V

(b) Vcc可輸出電流 > 40mA,包括0亮度調光(關燈)的情況下

(c) 傳輸速率 2400 bps

1.2.4 電壓位準

Hi電壓(位準1): 1.8V以上

Low電壓(位準0): 1.3V以下

1.3 LED 燈具待機功率

LED燈具連接智慧控制系統相關組件,量測LED燈具智慧控制模式下 之待機功率值(包含通訊模組接收端與整組燈具)

1.4 測試系統方塊圖

圖3測試系統方塊圖

2. 測試程序

若燈具只有一組光源時,Ls2無須測試。

2.1 類比介面

- 2.1.1 待測件之電源供應器及燈板測試,測試架構如圖4所示。
- (A) 對通訊模組之供電測試(對1、7腳位)
 - (1) 第1、7腳位開路時 量測第1、7腳位間之開路電壓,其電壓值應為12V±5%。
 - (2) 第1、7腳位之間接上300 Ω 標準電阻 量測第1、7腳位間之電壓,其電壓值應高於11.4V。
- (B) 對通訊模組之受電測試(對3、7腳位及對5、7腳位) 在第3、7腳位間和第5、7腳位間施加0.5V 直流電壓,量測燈具光輸出, 連續1小時燈板光輸出應為0。

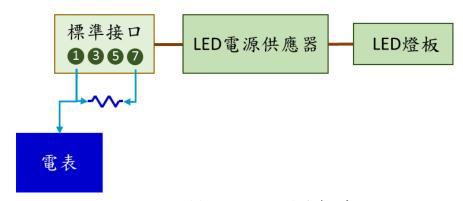


圖4通訊模組之供電測試架構

2.1.2 待測件智慧控制模組對接待測件燈具,測試架構如圖5所示。

圖5待測件智慧控制模組對接待測件燈具之測試架構

- (1) 完成量測系統之各組件接線。
- (2) 操控使用者介面,對 Ls1、Ls2分別送出調光訊號為0%、100%命 令。
- (3) 使用電表量測標準接口之 Ls1、Ls2電壓。 調光訊號0%時,對應之電壓需小於0.5V。 調光訊號100%時,對應之電壓需大於9.5V。

- (4) 量測 LED 燈具智慧控制模式下之待機功率 (包含通訊模組接收端與 整組燈具各一組)。
 - (a) 將通訊模組安裝到燈具測試電路中。
 - (b) 以額定電壓/頻率施加到燈具、調光器或控制裝置上。
 - (c) 送出調光訊號為100%命令,待燈具輸出穩定(點燈10分鐘)。
 - (d) 送出調光訊號為0%命令,使燈具熄滅穩定,通訊模組進入待機 狀態。
 - (e) 以0.25 s 或更短的相等間隔蒐集功率資料,紀錄60分鐘,計算紀錄時段內的平均功率。
 - (f) 送出調光訊號為100%命令, 燈具必須能回復全亮狀態。
- 2.1.3 待測件智慧控制模組對接 ITRI 參考件燈具,測試架構如圖6所示。

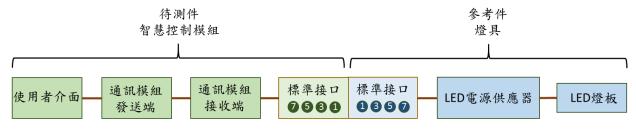


圖6待測件智慧控制模組對接ITRI參考件燈具之測試架構

- (1) 完成量測系統之各組件接線。
- (2) 操控使用者介面,對 Ls1、Ls2分別送出調光訊號為0%、100%命令。
- (3) 使用電表量測標準接口之 Ls1、Ls2電壓。 調光訊號0%時,對應之電壓需小於0.5V。 調光訊號100%時,對應之電壓需大於9.5V。
- 2.1.4 ITRI 參考件智慧控制模組對接待測件燈具,測試架構如圖7所示。

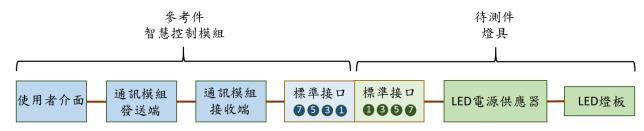


圖7 ITRI參考件智慧控制模組對接待測件燈具之測試架構

- (1) 完成量測系統之各組件接線。
- (2) 操控使用者介面,對 Ls1、Ls2分別送出調光電壓0.5V、9.5V。

(3) 使用電表量測標準接口之 Ls1、Ls2電壓及燈具調光對比數值。 調光電壓0.5V 時,對應之調光對比數值應為0%。 調光電壓9.5V 時,對應之調光對比數值需大於95%。 無智慧控制模組接入燈具時,視為調光對比數值100%。

2.2 數位介面

2.2.1 待測件之電源供應器對通訊模組之供電量測 (第1對4腳位),測試架構如圖8所示。

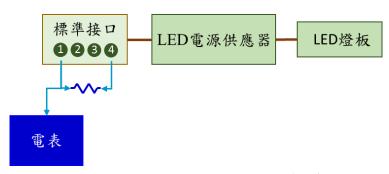


圖8對通訊模組之供電測試架構

- (1) 第1、4腳位開路量測第1、4腳位間之開路電壓,需為3.3V±10%。
- (2) 在第1、4腳位間接82.5Ω標準電阻負載。 量測第1、4腳位間之電壓,需高於2.97 V。
- 2.2.2 待測件智慧控制模組對接待測件燈具,測試架構如圖9所示。

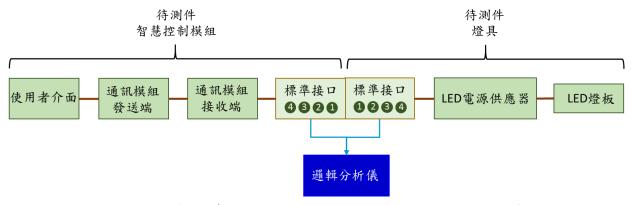


圖9待測件智慧控制模組對接待測件燈具之測試架構

- (1) 完成量測系統之各組件接線。
- (2) 操控使用者介面,分別送出標準 DALI 指令集命令。
- (3) 使用邏輯分析儀檢測標準接口之 D_command 與 D_feedback 訊號。

- (4) 檢測邏輯分析儀收到之封包是否符合規範。
- (5) 檢測後端燈板是否照指令正常運行。
- (6) 直接關閉燈具 (DALI 指令00) 時,連續1小時,此期間燈板光輸出應為0。
- (7) 量測 LED 燈具智慧控制模式下之待機功率(包含通訊模組接收端與整 組燈具各一組)。
 - (a) 將通訊模組安裝到燈測試電路中。
 - (b) 將額定電壓/頻率施加到燈、調光器或控制裝置上。
 - (c) 送出調光訊號為100%命令,待燈具輸出穩定(點燈10分鐘)。
 - (d) 送出調光訊號為0%命令,使燈具熄滅穩定,通訊模組進入待機 狀態。
 - (e) 以0.25 s 或更短的相等間隔蒐集功率資料,紀錄60分鐘,計算紀錄時段內的平均功率。
 - (f) 送出調光訊號為100%命令,燈具必須能回復全亮狀態。
- 2.2.3 待測件智慧控制模組對接 ITRI 參考件燈具,測試架構如圖10所示。

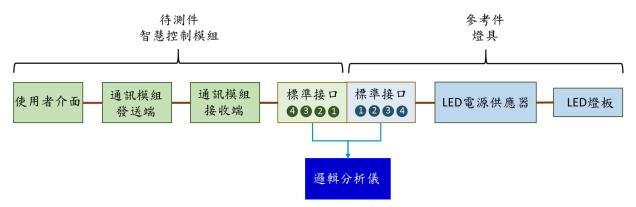


圖10 待測件智慧控制模組對接ITRI參考件燈具之測試架構

- (1) 完成量測系統之各組件接線,
- (2) 操控使用者介面,分别送出標準 DALI-2指令集命令,
- (3) 檢測後端 DALI-2燈具是否照指令正常運行。
- 2.2.4 ITRI 參考件智慧控制模組對接待測件燈具,測試架構如圖11所示。

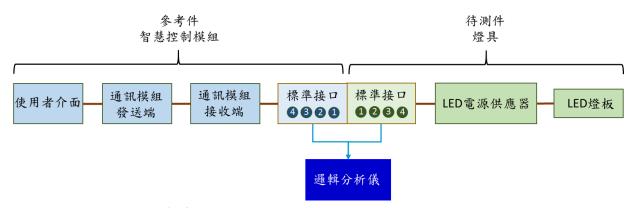


圖11 ITRI參考件智慧控制模組對接待測件燈具之測試架構

- (1) 完成量測系統之各組件接線,
- (2) 操控使用者介面,分别送出標準 DALI-2指令集命令,
- (3) 檢測後端 DALI-2 燈板是否照指令正常運行。

2.2.5 封包傳輸規範

起始碼	位址1	位址2	高位元組	低位元組	檢查碼
Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
0X55	Addr1	Addr2	DALI Data2	DALI Data1	Check
	0X20	0X07			sum

Check sum= (0x55 + Addr1 + Addr2 + DALI Data2 + DALI Data1) & 0xff

2.2.6 標準指令集

- (1) DALI 控制命令
- 00 直接關閉燈具(不需要漸變)
- 01 使用選定的亮度變化速度,將燈具亮度逐漸調高 200ms
- 02 使用選定的亮度變化速度,將燈具亮度逐漸調低 200ms
- 03 亮度等級加1,若當前亮度爲0或者預訂的最大等級,亮度無變化
- 04 亮度等級减1,若當前亮度爲0或者預訂的最小等級,亮度無變化
- 05 亮度等級調整到預訂的最大等級
- 06 亮度等級調整到預訂的最小等級
- (2) DALI 設定命令
- 101 將 XX 儲存到 DTR 中
- 21 將燈具的當前亮度等級儲存在 DTR 中

- 2A 將 DTR 中的值,設置爲預訂的最大亮度等級
- 2B 將 DTR 中的值,設置爲預訂的最小亮度等級
- 2C 將 DTR 中的值,設置爲系統失效時的亮度等級
- 2D 將 DTR 中的值,設置爲燈具上電時的默認亮度等級
- 2E 將 DTR 中的值,設置爲亮度變化時間
- 2F 將 DTR 中的值,設置爲亮度變化速率
- 98 讀取 DTR 中的數據
- A1 讀取預訂的最大亮度等級
- A2 讀取預訂的最小亮度等級
- A3 讀取燈具上電時的默認亮度等級
- A4 讀取燈具系統失效時的亮度等級
- A5 讀取亮度變化時間/亮度變化速率

(3) DALI 調色溫命令

設定色溫到最冷色溫

高位元組 Byte4	低位元組 Byte5
0xC3	0x00
0xA3	0x01
0xC1	0x08
0xFF	0xE7
0xC1	0x08
0xFF	0xE2

設定色溫到最暖色溫

高位元組 Byte4	低位元組 Byte5
0xC3	0xFF
0xA3	0xFE
0xC1	0x08
0xFF	0xE7
0xC1	0x08
0xFF	0xE2

讀取預定的最冷色溫

高位元組 Byte4	低位元組 Byte5
0xA3	0x80
0xC1	0x08
0xFF	0xFA (HSB)
0xFF	0x98 (LSB)

讀取預定的最暖色溫

高位元組 Byte4	低位元組 Byte5
0xA3	0x82
0xC1	0x08
0xFF	0xFA (HSB)
0xFF	0x98 (LSB)

設定色溫值為 YYXX

高位元組 Byte4	低位元組 Byte5
0xC3	0xYY (HSB)
0xA3	0xXX (LSB)
0xC1	0x08
0xFF	0xE7
0xC1	0x08
0xFF	0xE2

讀取現在色溫

高位元組 Byte4	低位元組 Byte5
0xA3	0x02
0xC1	0x08
0xFF	0xFA (HSB)
0xFF	0x98 (LSB)

設定開機色溫為 YYXX (此段指令要在 100ms 內輸入兩次)

高位元組 Byte4	低位元組 Byte5
0xC3	0xYY (HSB)
0xA3	0xXX (LSB)

0xC1	0x08
0xFF	0xE7
0xFF	0x2D

讀取開機色溫

高位元組 Byte4	低位元組 Byte5
0xFF	0xA3
0xA3	0xE2
0xC1	0x08
0xFF	0xFA (HSB)
0xFF	0x98 (LSB)

附件二

閃爍測試程序

環境溫度:測試應在25°C±5°C的環境溫度下進行。

- (a) 將調光器安裝到燈具測試電路中。
- (b) 以額定電壓/頻率施加到燈具、調光器或控制裝置上。
- (c) 送出調光訊號為 100 %命令或將調光器調整到最大輸出位置。
- (d) 待燈具穩定(依 CNS 16047 穩定狀態執行)。
- (e) 記錄來自測量設備的光輸出、電參數和波形讀數,並記錄閃爍百分 比及閃爍指數。
- (f) 送出調光訊號命令或調整調光器,使燈具之光輸出調整至(20%最大 光輸出)±5%。

例如:最大光輸出為1,000 流明且標稱的最小調光百分比為20%的 燈具,應調整為190至210流明的光輸出等級。

- (g) 待燈具穩定(依 CNS 16047 穩定狀態執行)。
- (h) 記錄來自測量設備的光輸出、電參數和波形讀數,並記錄閃爍百分 比及閃爍指數。